Protecting Last Four Rounds of CLEFIA is Not Enough Against Differential Fault Analysis
نویسندگان
چکیده
In this paper we propose a new differential fault analysis (DFA) on CLEFIA of 128-bit key. The proposed attack requires to induce byte faults at the fourteenth round of CLEFIA encryption. The attack uses only two pairs of fault-free and faulty ciphertexts and uniquely determines the 128-bit secret key. The attacker does not need to know the plaintext. The most efficient reported fault attack on CLEFIA, needs fault induction at the fifteenth round of encryption and can be performed with two pairs of fault-free and faulty ciphertexts and brute-force search of around 20 bits. Therefore, the proposed attack can evade the countermeasures against the existing DFAs which only protect the last four rounds of encryption. Extensive simulation results have been presented to validate the proposed attack. The simulation results show that the attack can retrieve the 128-bit secret key in around one minute of execution time. To the best of authors’ knowledge the proposed attack is the most efficient attack in terms of both the input requirements as well as the complexity.
منابع مشابه
On the Optimality of Differential Fault Analyses on CLEFIA
Differential Fault Analysis is a powerful cryptanalytic tool to reveal secret keys of cryptographic algorithms. By corrupting the computation of an algorithm, an attacker gets additional information about the secret key. In 2012, several Differential Fault Analyses on the AES cipher were analyzed from an informationtheoretic perspective. This analysis exposed whether or not the leaked informati...
متن کاملMultiple Bytes Differential Fault Analysis on CLEFIA
This paper examines the strength of CLEFIA against multiple bytes differential fault attack. Firstly, it presents the principle of CLEFIA algorithm and differential fault analysis; then, according to injecting faults into the r,r1,r-2 CLEFIA round three conditions, proposes three fault models and corresponding analysis methods; finally, all of the fault model and analysis methods above have bee...
متن کاملSecurity Evaluation against Differential Cryptanalysis for Block Cipher Structures
Estimating immunity against differential and linear cryptanalysis is essential in designing secure block ciphers. A practical measure to achieve it is to find the minimal number of active S-boxes, or a lower bound for this minimal number. In this paper, we provide a general algorithm using integer programming, which not only can estimate a good lower bound of the minimal differential active S-b...
متن کاملDifferential Fault Analysis on DES Middle Rounds
Differential Fault Analysis (DFA) is a powerful cryptanalytic technique that disturbs cryptographic computations and exploits erroneous results to infer secret keys. Over the last decade, many works have described and improved DFA techniques against block ciphers thus showing an inherent need to protect their implementations. A simple and widely used solution is to perform the computation twice...
متن کاملA Differential Fault Attack Against Early Rounds of (Triple-)DES
Previously proposed differential fault analysis (DFA) techniques against iterated block ciphers mostly exploit computational errors in the last few rounds of the cipher to extract the secret key. In this paper we describe a DFA attack that exploits computational errors in early rounds of a Feistel cipher. The principle of the attack is to force collisions by inducing faults in intermediate resu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012